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Abstract 
 
This article presents the development of a two-phase flow model in which the variation of the bubble radius due to 
changes in pressure was taken into account. The development considers expansion effects in the interaction forces 
between a dilute dispersion of gas bubbles and a continuous liquid phase. The closure relationships, associated with 
the spatial deviation around averaging variables, were formulated as functions of known variables. In order to solve 
the closure problem, as an approach of the heterogeneous structure of the two-phase flow, a geometric model given 
by an eccentric unit cell was applied. The obtained closure relationships include terms that represent combined 
effects from translation and pulsation due to displacement and size variation of the bubbles. 
 
Keywords: potential flow, two-phase flow, Navier-Stokes equations, closure relationships. 
 
Resumen 
 
En este artículo se presenta el desarrollo de un modelo de flujo en dos fases que considera la variación del radio de 
burbuja debido a cambios en la presión. El desarrollo se realizo considerando efectos de expansión en las fuerzas de 
interacción que se presentan entre una dispersión diluida de burbujas de gas y una fase continua de líquido. Se 
formularon relaciones de cerradura, asociadas a las desviaciones espaciales alrededor de las variables promedio, 
como función de variables conocidas. Con el fin de resolver el problema de cerradura, como una aproximación de 
la estructura heterogénea del flujo en dos fases, se aplicó un modelo geométrico dado por una celda unitaria 
excéntrica. Las relaciones de cerradura obtenidas incluyen términos que representan efectos combinados de 
traslación y pulsación debido al desplazamiento y variación del radio de las burbujas. 
 
Palabras clave: flujo potencial, flujo en dos fases, ecuaciones de Navier-Stokes, relaciones de cerradura. 
 
1. Introduction 

 
In this paper a two-phase flow model was 

developed to consider the phenomenological effects, 
due to size variations of the gas phase during large 
pressure changes of a system. Phenomena where the 
bubble size variations might be crucial, is the flow 
regime relaxation instability, which is caused by the 
pressure drop characteristics of the different flow 
regimes. As it has been pointed by Lahey and 
Podowski (1989), slug flow exhibits less pressure 
drop at the same gas and liquid flow rates than the 
bubble flow regime. Therefore, if a system is 
operating in the bubbly flow regime near the flow 
regime boundary, a small negative perturbation in 
liquid flow rate may cause a transition to slug flow 
and the channel pressure drop will tend to reduce, 

inducing more inlet liquid flow. This, may cause the 
system to revert back to bubble flow. 

In previous works, in order to take into 
account the bubble radius variations due to 
expansion effects, Cheng et al. (1985) and Lahey 
(1992) assumed that a single bubble (each bubble 
being isolated from the others) is surrounded by an 
infinite liquid medium, and excited by sinusoidal 
pressure oscillations. The response of a stationary 
bubble is assumed to be spherically symmetric. The 
continuum assumption is valid for pressure 
excitations having wavelengths much greater than 
the bubble radius. Using these ideas, the closure 
relationships were developed by Espinosa-Paredes et 
al. (2004) based on the concentric cell approach, for 
a pulsating and translating bubbles. 

In contrast with previous works, in the present 
paper the closure relationships were developed using 
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an eccentric cell model considering interaction forces 
between liquid and bubbles due to radius variations 
by expansion effects. Expansion effects are very 
important in BWR and other industries related with 
steam generator. 

 
2. Theoretical development 
 

The problem under consideration is a dilute 
dispersion of non-interacting identical gas bubbles in 
a continuous liquid phase, moving through an 
isothermal, incompressible Newtonian fluid 
(illustrated in Fig. 1). This system is contained in a 
vertical duct with a much bigger diameter than the 
size of the individual bubbles. Interfacial mass 
transfer does not take place but interfacial 
momentum transfer is possible. The surface tension 
is considered constant. This study will be far away 
from the solid walls of the duct, so wall effects can 
be neglected. 

In a previous study on two-phase flow 
(Cazarez-Candia, 2001), it was shown that the 
volume average equations, which can be obtained 
from the local Reynolds equations, are given by: 
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where k and m (k ≠ m) denotes either gas (k = g) or 
liquid (k = l) phases; ρk, vk, pk, are the local variables 
in the k-phase representing density, velocity and 
pressure vectors, respectively, g is the gravity 
acceleration vector, and kε  is the void fraction in 

the k-phase and k  indicates the intrinsic phase 
average. The equation of state is given by 

k k k
k k kpρ ρ= . The aim of this work is to 

develop appropriate closure relationships, that 
include expansion effects, with an eccentric cell 

model for the terms kmpΔ , k
k kv v� �  and Mkm as 

functions of the averaged variables. The interfacial 
force per unit volume applied on the k-phase is 
defined by: 
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where nkm is the unit normal vector at the interfacial 
pointing out of the k-phase and the second integral is 
the interfacial drag force, which was defined by 
Lahey (1991) as εgFD; where FD is the interfacial 
drag force per unit volume. The first integral in Eq. 
(3) is given by Espinosa-Paredes (1998): 
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where 

 1
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l A
dAφ

ε
= ∫m n�
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Here φ�  represents the spatial deviations of the 
velocity potential, which is defined by Gray (1975) 
as: 
 lφ φ φ= − 〈 〉�  (6) 
 

 
 

Fig. 1. Schematic diagram of the bubble flow system 
and averaging volume. 
 

It should be pointed out that in Eqs. (4) and 
(5), spatial deviations of the velocity and potential 
for the liquid phase, are present. Then, it is necessary 
to establish a functional relationship for the spatial 
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deviations with the average variables. In order to 
obtain these relationships, a geometric model known 
as unit cell model, was considered to approximate 
the structure of the two-phase flow, which has 
remained agglutinated within the integral in the 
averaging process. 
 
2.1. Eccentric unit cell 

 
Fig. 2 shows an eccentric unit cell, which is 

proposed in this work to solve the closure problem in 
terms of spatial deviation variables, which is briefly 
described in this section.  

The radius of the spherical bubble in an 
eccentric cell with respect to the centroid is not 
constant as in the case of a concentric cell. In order 
to determine the eccentric radius r, an expression 
was developed as a function of the position of the 
spherical bubble with respect to the centroid of the 
cell: 
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where b is the cell radius relative to the concentric 
coordinates, γ  is the distance from the centroid of 
the cell to the centre of the bubble and g(ϕ) = 
hcosϕ + ksinϕ (h, k, l represent a point relative to the 
centroid of the cell). It can be observed from this 
equation that the limit γ → 0, the radius of the 
concentric cell is recovered, .i.e., b. 
 

 
 

Fig. 2. Eccentric cell model. Bubble radius Rb, 
concentric cell radius b, distance from the centroid of 
the cell to the centre of the bubble γ, eccentric radius 
respect to the centre of the bubble r(θ ,ϕ), 
coordinates of the concentric (x0,y0,z0) and eccentric 
(x,y,z) cell. 
 
3. Closure relationships 
 

In order to obtain the averaging velocity 
potential, an eccentric cell model was applied. The 
process under consideration is illustrated in Fig. 2, 
where the bubble has a radius Rb and the cell is a 

sphere of radius b, thus (Rb /b)3 is equal to the 
volume fraction in the cell. 

Under the above considerations the velocity 
potential for flow around a pulsating and translating 
sphere is given by (Lahey, 1992): 
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where r, and θ are the spherical co-ordinates, Rb is 
the sphere radio, k is the wave number (k = ω / Cl = 
1/λ; ω is the angular frequency, Cl, is the speed of 
sound in the liquid phase, λ is the wavelength), U is 
the sphere velocity, and bR�  represents the radial 
velocity given by: 
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When a single bubble is surrounded by an infinite 
liquid medium, and excited by sinusoidal pressure 
excitations having wavelengths λ, which are much 
greater than the bubble radius, Rb, the terms of order 
k Rb, or higher, can be neglected in Eq. (8), resulting: 
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3.1 Spatial deviations of the velocity potential 
 
Substituting Eq. (10) into Eq. (5), we obtain: 
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where lφ  is constant with respect to the integral: 
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The averaging velocity potential in spherical co-
ordinates is given by: 
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where 2 sinr dr d dθ θ ϕ  is the differential element of 

volume dV, ( )3 34 / 3l bV b Rπ= −  and ( ),r θ ϕ  is the 

eccentric radius given by Eq. (7), which depends on 
the bubble position within the cell (Fig. 2). 
Substituting Eq. (10) into Eq. (13) and integrating, 
we obtained the following result 
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When the eccentricity γ is defined, c1 and c2 are 
constants. It is important to point out that, when the 

unit cell model is concentric: 0lφ = . Substituting 
the Eqs. (8) and (14) into Eq. (6), we obtain the 
spatial deviations of the velocity potential which are 
given by 
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Then, the integral on the interfacial area of the 
spatial deviations of the velocity potential (Eq. (5)) is 
given by 
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where the virtual mass coefficient to concentric cell 
is given by ( ) / 2IMC g gC ε ε= ; the differential 

element of area is 2 sinbdA R d dθ θ ϕ=  and the unit 

vector is given by nlg = −er = ex sinθ cosϕ + ey sinθ 
sinϕ. 

It can be observed in Eq. (18) that the liquid 
density is included to analyze the physical 
interpretation. This equation represents the virtual 
mass effect, which includes in addition to the 
classical term (translation velocity), a new term: the 
stationary pulsates of the bubble. The gradient of the 
void fraction is due to eccentric cell model approach. 
When 0bR =� , this result is simplified to ρlCIMC(εg) 

1
1( )z glU cε ε−− ∇e , which corresponds to an 

eccentric cell model without expansion effect. Now, 
when 0bR =� , without expansion effects and for 
concentric cell model, the classical virtual mass term 
(Wallis, 1989): ( )l IMC g zC Uρ ε e  is obtained. 
According with Eq. (18), the Eq. (5) can be rewritten 
as: 
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where U = U ez and the coefficients are given by 
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Results in literature have been expressed in the form 
(1 )IM IMC gC C αε= −  (Zuber, 1964; van 

Wijngaarden, 1976; Geurst, 1985; Biesheuvel and 

Spoelstra, 1989), where α is a constant that depends 
on the details of the pair wise interaction of the 
bubbles and 1/ 2IMC l gC ρ ε= . In the absence of 
interactions, the virtual mass of each sphere is 
1/ 2 l gρ ε . 
 
3.2 Spatial deviations of the velocity 
 
The spatial deviations of the velocity are defined by 
 l

l l l= − 〈 〉v v v�  (22) 
where 
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where er was defined previously and eθ = ex cosθ 
cosϕ + ey cosθ sinϕ − ez sinθ. Then, 

 ( )
3 2

3 23 cos
2

bb b
l r z r

UR R R

r r
θ= − − +v e e e

�
 (24) 

The intrinsic average of the velocity is given by 
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Substituting the Eq. (24) in the Eq. (25) and 
integrating it the following result is obtained 
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Substituting Eqs. (24) and (25), into Eq. (22) the 
final form of the spatial deviations of the velocity is 
obtained: 
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The third term on the right hand side of this equation 
is identified as eccentric effects, since it involves 
values of a and b that are evaluated on a point that is 
not located at the centroid of the cell. 
 
3.3 Average of products of deviation 
 

In Eq. (4) it can be observed, that the first and 
second terms of the right side contain product 
averages of variables between spatial deviations, 
which were determined in this section. 



G. Espinosa-Paredes y col./ Revista Mexicana de Ingeniería Química Vol. 6, No. 1 (2007) 111-117 

 115

The intrinsic average of the spatial deviations 
of the velocity potential with the spatial deviations of 
the velocity can be expressed in the following form 
 l l l l

l l lφ φ φ〈 〉 = 〈 〉 − 〈 〉 〈 〉v v v� �  (30) 
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Substituting Eqs. (14), (26) and (31) into Eq. (30) we 
obtained: 
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When the unit cell model is concentric, this result 
can be simplified to 1 27 / 2l

l z g bl bR URφ ε ε−〈 〉 = −v e� �� . 
Now, the intrinsic average of the dyad of the spatial 
deviations can be decomposed in two terms: 
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The classic second-order tensor cK  was re-
defined by Wallis (1989) for single rigid spheres in a 
fluid, which was obtained with the potential for the 
motion of a sphere with a radius Rb moving with 
speed U , in an infinite medium with spherical 
coordinates. In this equation we identified that 

( ) 2
c e U+K K  is due to translation effects on the 

sphere, while Ub bURK �  is due to combined effects of 

translation and pulsation, and ( ) 2
cb eb bR+K K �  

considers only pulsating effects. 
 
3.4 Difference between the intrinsic and interface 
averages of the pressure 
 
Considering spherical bubbles, the interfacial 
average pressure is given by 

2
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l lg lg b
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π
〈 〉 = ∫ ∫  (49) 

where 24 bRπ  is the superficial area of the spherical 

bubble A 2 sinbR d dθ θ ϕ  is the differential element of 
area dA and plg is the interfacial local pressure. To 
integrate the previous equation, it is necessary to 
calculate first plg. Then, the well known Bernoulli’s 
equation (Currie, 1974), can be rewritten as: 
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l lf t p ρ=  was used. Now substituting 

Eq. (10) and evaluating at the surface (r =Rb) bR ), 
the following result is obtained 
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Here 
blg l r Rp p == . Then, substituting Eq. (51) into 

Eq. (49), and after integration yields 

 
2 21 3( )

4 2

l
lg l lg l

l l b bb

p p p

U R R Rρ ρ

〈Δ 〉 = 〈 〉 − 〈 〉

= − + +� ��
 (52) 

The closure of Eq. (2) now can be obtained by 
substitution of Eq. (52) for kmp〈 Δ 〉 , Eq. (35) for 

l
lφ〈 〉v� �  and Eq. (40) for k

k k〈 〉v v� � . The momentum 
transfer between the gas and liquid phases for each 
phase is given by Eq. (3) and can be written (Cheng 
et al., 1985): lg gl= −M M . 

The closed set of averaged equations must 
provide enough information for the estimation of the 
global phenomenological behavior in bubbly gas-
liquid flows in terms of averaged variables. 
 
Conclusions 
 

The closure relationships using an eccentric 
cell model and the potential flow around a translating 
spherical bubble with radius variations was 
developed. The results show that the closure problem 
is a function of the eccentricity, which is defined by 
a parameter γ  through Eq. (7).  

The virtual mass effect given by Eq. (19) 
includes two coefficients: the first coefficient (Eq. 
20) is due to translating effects, while the second 
coefficient (Eq. 21) considers radial effects, both 
coefficients includes the gradient of the void 
fraction, which change the structure of the non-linear 
differential averaged equation. The closure for 

l
lφ〈 〉v� � (Eq. 35) is a vector made for three terms: 

translating, pulsating and translating-pulsating 
effects. We found that the closure l

l l〈 〉v v� �  (Eq. 40) 
includes translating, pulsating and combined of 
translating and pulsating effects on the sphere. 

An eccentric cell model allows approaching 
the asymmetric effects of a bubble moving in a 
continuous fluid. Most of the models consider that 
the bubble is a sphere due that the potential flow 

theory around a spherical object is relatively 
straightforward. Nevertheless, the sphericity of the 
bubble occurs when the internal and external forces 
are in equilibrium and in general, this happens for 
low void fractions and small bubbles. However, in 
most industrial processes and experimental studies, 
the bubbles are not spherical, and then the eccentric 
cell model allows approaching the non-spherical 
effects by means of the eccentricity parameters that 
were theoretically obtained in this article. 
 
Nomenclature 
a vector defined in Eq. (27) 
Akm interfacial area contained in V 
A defined in Eq. (46) 
b cell radius respect to concentric coordinates 
b vector defined in Eq. (28) 
B tensor defined in Eq. (47) 
c vector defined in Eq. (32)  
CIMC virtual mass coefficient to concentric cell (= εg 

/ 2) 
C tensor defined in Eq. (48) 
d, e, f vectors defined in Eqs. (33), (34) and (36), 

respectively 
g gravity acceleration vector 
h vector defined in Eq. (37) 
I unit tensor 
K tensor  
lg characteristic length of disperse phase 
ll characteristic length of continuous phase 
m vector defined in Eq. (5) 
Mkm interfacial force per unit volume applied on 

phase k 
nkm unit vector at the interface point out of phase k 
pk local pressure of phase k 

kp�  spatial deviation of pressure of phase k 

k km
p  interfacial average pressure 

k
kp   intrinsic average pressure of phase k 

r0 characteristic length of average volume 
Rb bubble radius 
Rb�  defined in Eq. (9) 
vk velocity vector of phase k 

kv�  spatial deviation of velocity vector of phase k 
k

kv  intrinsic average velocity vector of phase k 
V averaging volume 
Vk  volume of the k-phase contained in V 
Greek symbols 

kmpΔ  defined in Eq. (52) 
εκ volume fraction of phase k 
γ cell radius respect to eccentric coordinates 
φ local potential 
φ�  spatial deviations of potential 

lφ  average potential 

ρk density of phase k 
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Subscripts 
c concentric 
e eccentric 
g disperse phase 
k g or l (k ≠ m) 
l continuous phase 
m g or l (m ≠ k) 
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